AN APPROXIMATE METHOD FOR SOLVING THE
INTEGRAL EQUATION OF TRANSPORT THEORY

M. I, Zhurina, A. M. Popova, UDC 539.125.523
and A. P, Prudnikov

An approximate solution is given for one of the integral equations of transport theory,
uging the Pade method.

To determine the probability for scattering of particles in a spherically symmetric potential g- V{r) we
have the integral equation [1]
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Here the factor g in front of the potential function is a numerical parameter g < 1 determining the force of
interaction of the particle with the field.

It is known that for all real p and p' the function t(p, p’, k% can be expanded in Legendre polynomials
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Since the function V(p, p') can also be expanded in Legendre polynomials, then the function t; (p,p',k?)
is a partial amplitude and satisfies the equation
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where p, p', andk®are positive real quantities;
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1 = V(n/2y) 37 + 1,2 v) are spherical Bessel functions; d; + 4 /»(y)are cylindrical Bessel functions; and g-V(r)
is some real function. )

The iteration series in Eq. 4) has a definite physical meaning, and its terms are contributions of n-fold
m=1,2,3,...) scattering of an incident particle at the given potential. Therefore, to solve a number of scat-
tering problems it is interesting to find the partial probability amplitude t7 (p,p',%?) using Eq. 4) and the method
of succezssive approximations. However, the iterative series of Eq. 4) converges slowly for positive real
values k°.
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We can accelerate the convergence of the series of successive approximations in solving Eq. 4} by
making the assumption that the interaction potential V; (p, p') is a function of the parameter g:
Vilp, p)=g-Vi(p, p)- ©)

In this case the function t; (p, p', k%) becomes independentof the parameter g and we can represent the itera-
tion series of Eq. 4) in the form
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Since the series (7) converges slowly for g =1 and large k?, it is expedient in practice to adjust the Pade
method to a different rapidly convergent series. The essence of the Pade method is that the desired function
t; (ps p‘,kz; g) is represented as a ratio of two polynomials of degrees n and m:
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It was shown in [2] that to solve an equation of Fredholm type we can obtain a better approximation for
the desired function by using the diagonal Pade approximation
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and setting by =1. The function t; (p, p', K?; g)isanalytic in g in a circle of radius [pl= 1. Let the series

Ebﬂgﬁ converge in the circle of the same radius p; then we have the relation
p=0
“, a,8"

= PR (10)
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to an accuracy including terms of order O(@g™™*!). Here the right side is a symbolic representation of the
iteration series (7). From Eq. (10), by equating coefficients for the same powers of g on the right and left
sides, we can obtain a system of algebraic equations to determine the coefficients ap and bﬁ in Eq. (9):
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Clearly, any approximation in Eq. (9) is an n-term fraction. It is known from the theory of infinite continued
fractions that odd values of n give better approximations {3], It follows from Eq. (11) that we can find an ex~
pression for t; {p, p's K% g) in the linear and cubic Pade approximations of the form [4]

Ain o, o k2 g) = &= 066 2
1 —glcicy)

Ep, ) B g) = ¢+ 8(ey+Dy-¢,/D)+ g% (¢,+ Dy -¢y/ D + D, ¢;/D) - g*+ ¢+ Dy ¢y D+ Dy ¢/ D+-Dy-¢y/D)

. 4 . (13)
(1-+g-DyD + g*-D,/D + g°-Dy/D)

828



005 \
7 / 2 N 4p 0
"
» ot N
) A ! 2
/ o K24
qz A WFaos ‘
- 7 ==
k -02
/_0,0‘9 '
_0'5 E—
, i :
ARL k%
07—
s / / ~04 -
oW
B ———— ,
: —_——— — 3 U=
-4 — -4’ L g1
’ 06 75 . b
Reto(pp ki) a 7“4 | !

Reta(p 0/ K2g)
Fig.1l. Real part of the solution of the integral equation for the
case of a Woods—Saxon potentiala (V, = 0.36 m™2, r, =2.46m, a=
0.2 m, k® = 0.1 m~?) and a Gauss potentialb (V, =1.9 m=%, ry =1.1
m, @ =0.2 m, k? = 0.1and 4 m~2), determined by the method of suc~-
cessive approximations: curve 1) linear approximation; 2) fourth-
and higher-order approximations; 3) linear approximation; 4)
cubic approximation and an approximation determined by the
method described in this paper.

where
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In this work we obtained the function t;(p, p', K2 g) for the following specific shapes of interaction potential:
1) a Woods—Saxon potential
gV =—Vy[l —exp((r—ra)l™? for O<lr<<oo, g==1;
2) a Gauss potential
gV ()= —V,-exp(—r¥rp) for 0<r<<oo, g= 1.

For these potentials Fig.1 shows the results of calculations for various values of t; (p, p', k2; g), using the
Pade method and Eq. (7). The variable p' in these computations was varied in the range from 0 to 4.6 m-!
and p =k m~!. It follows from the calculations that for p < 4 m~! the cubic approximation in the Pade method
allows us to calculate to an accuracy of 101, For p > 4 m~' the linear approximation gives an accuracy of

10~%. The results of calculations of t; (ps P’ K2 g) for all values of p, p', k® and the chosen potentials did not

give an accuracy of 10~* up to the fourth approximation, using the method of successive approximations.

Therefore, by calculating the series (7) using the Pade method, we can obtain a solution of the equation
for the probability of scattering of a particle at the above potentials in the form of a rapidly convergent series.
We note that terms of a series representing the solution of Eqg. (4) in the Pade method can be given a physical
interpretation, since they are made up of terms of the series (7) or amplitudes of the n-fold scattering.

NOTATION

ps p'swave Vectors;kz, system energy; €, a small parameter; i = v—1; r, radius vector; &;, wave vec-
tor space; {,, radius vector space; V,, depth of potential; a, smearing parameter; r;, radius of the potential
well,
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EFFECTIVE THERMAL AND ELECTRICAL CONDUCTIVITIES
OF ANISOTROPIC DISPERSED MEDIA

R. Z. Grinberg, A. D. Terekhov, UDC 536.21
and E. M. Sher

We obtain formulas for determining the principal values of the thermal-conductivity and
electrical~conductivity tensors of materials obtained by the pressing of a powder consisting
of anisofropic grains.

Present-day industry makes extensive use of a number of materials obtained by pressing of a powder
consisting of anisotropic particles. Thus, for example, the branches of thermoelements used in refrigera-
tors and generators are obtained by pressing pulverized ternary alloys with a Bi,Te; base {1] which have
strong anisotropy in the original (single-crystal) state.

Even though the powder is isotropic before pressing, after the pressing it displays anisotropic properties,
although to a lesser degree than in a single crystal. These phenomena were mentioned in [2-4]. The authors
of those studies attributed the phenomenon to the presence of microcracks.

However, an explanation of the anisotropy phenomenon on the basis of microcracks alone is unjustified.
In [5] it was shown that the anisotropy in thermal conductivity and electrical conductivity that may arise as a
result of porosity in the pressing process is much lower than the observed value, and, consequently, cracks
alone cannot explain the anisotropy. It should also be noted that in {2], although the anisotropy was attributed
to the presence of microcracks, it was stated outright that no microcracks were observed. In [4] it is noted
that specimens made of pressed material have a "visible texture, " indicating the presence of a certain degree
of disorder in the dispersed particles which results from pressing.

We shall show below that the anisotropy of pressed specimens can be completely explained by the appear-
ance of a degree of disorder in the orientation of the dispersed particles with respect to the direction of press~
ing.

For this purpose, we shall derive relations for the effective thermal conductivity negr and the effective
electrical conductivity ogff of a dispersed material consisting of anisotropic particles.

We shall solve the problem for the following assumptions.

1. In deriving the relation, we shall start from the fundamental assumption that a dispersed medium is
a system of chaotically arranged anisotropic particles whose orientation is characterized by a differential dis-
tribution function with respect to some direction.

2. At distances much greater than the dimensions of the individual grains the dispersed medium is spa-
tially homogeneous.
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